Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6KYJ_1)}(2) \setminus P_{f(7OFG_1)}(2)|=247\),
\(|P_{f(7OFG_1)}(2) \setminus P_{f(6KYJ_1)}(2)|=4\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101000001011101110000100001000000001111101010111110011111110000101001100110010000100001011110000011011011011001010011001110111101101101001011100000101110110100001000101111001010111010001010000101110100000010001110100011101011000010010101001010110000110011110011111110001011101000110000001111010011011100000011010111011010110010110111010100010111101100011000010111100011011111111011101101111001110001101111011011101111110011101010100010011001001100100101011110011011010101100100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{487
}{\log_{20}
487}-\frac{10}{\log_{20}10})=151.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6KYJ_1
7OFG_1
194
99
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]