Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6KTV_1)}(2) \setminus P_{f(8SAB_1)}(2)|=102\),
\(|P_{f(8SAB_1)}(2) \setminus P_{f(6KTV_1)}(2)|=79\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001000010110001111100110010000010000010000111111000101101001010011010101011010110011101100101101101001010011110100100000010010001000101100101010100111100100000111101101110100110000001110010000001010101111001001110010010000100100110001101000111010110100100111011101111011111101110010110110001001111100001100011011111100101110100100110000001101000100110101000100010111111100100100100000000000000010011100111100011100101101001110111111101010011110100010010001110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{863
}{\log_{20}
863}-\frac{403}{\log_{20}403})=123.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6KTV_1
8SAB_1
154
145
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]