Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6KRL_1)}(2) \setminus P_{f(3ZRM_1)}(2)|=102\),
\(|P_{f(3ZRM_1)}(2) \setminus P_{f(6KRL_1)}(2)|=62\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10110110111111001111110000000010111011110001010101111110000001111100011011100011010000101010101010101000010111000110010011100110100000110110000011110110011100000000110010110110100010001000001011100010101110101011011101000000010111011010001010100101001100101010011110011110010011001011001001101101110010001101010000111100001111110111101001000101101010001101110000001100100101110100111011110110110010011101010111011110000000111011000111000110110100110101001010000101010110000111110110010011010101100000100111110000001001001010000111011100100110000
Pair
\(Z_2\)
Length of longest common subsequence
6KRL_1,3ZRM_1
164
4
6KRL_1,4QYE_1
175
4
3ZRM_1,4QYE_1
171
6
Newick tree
[
4QYE_1:87.95,
[
6KRL_1:82,3ZRM_1:82
]:5.95
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{916
}{\log_{20}
916}-\frac{371}{\log_{20}371})=145.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6KRL_1
3ZRM_1
185
155
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]