Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6JOM_1)}(2) \setminus P_{f(9AYZ_1)}(2)|=139\),
\(|P_{f(9AYZ_1)}(2) \setminus P_{f(6JOM_1)}(2)|=44\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101101000101110111111100111001010001111010010101101001010101011000010110000111110100011010101100000011100101001110110011100101010001010100101111011000101110110010101110110100001010110010001001000100000010110100111001101001001000010000110100111000001011111010001000100011010101010010100101010111000110100111100100001100100101000100010000100111010000000
Pair
\(Z_2\)
Length of longest common subsequence
6JOM_1,9AYZ_1
183
4
6JOM_1,5OKM_1
156
4
9AYZ_1,5OKM_1
199
4
Newick tree
[
9AYZ_1:10.76,
[
6JOM_1:78,5OKM_1:78
]:22.76
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{492
}{\log_{20}
492}-\frac{141}{\log_{20}141})=103.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6JOM_1
9AYZ_1
129
89.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]