6JJT_1|Chains A, B, C, D|PhnH|Penicillium herquei (69774)
>1PUI_1|Chains A, B|Probable GTP-binding protein engB|Escherichia coli (562)
>6EWW_1|Chains A, B, C, D|14-3-3 protein zeta/delta|Homo sapiens (9606)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6JJT_1)}(2) \setminus P_{f(1PUI_1)}(2)|=60\),
\(|P_{f(1PUI_1)}(2) \setminus P_{f(6JJT_1)}(2)|=96\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100110111111011100101101011101010011101000001010110010111111101010111101100011010101010011000011011100011110111110000000011001011101101001011001010
Pair
\(Z_2\)
Length of longest common subsequence
6JJT_1,1PUI_1
156
3
6JJT_1,6EWW_1
152
3
1PUI_1,6EWW_1
142
4
Newick tree
[
6JJT_1:78.90,
[
6EWW_1:71,1PUI_1:71
]:7.90
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{359
}{\log_{20}
359}-\frac{149}{\log_{20}149})=63.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
6JJT_1
1PUI_1
79
67
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]