Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6JIR_1)}(2) \setminus P_{f(5GHT_1)}(2)|=60\),
\(|P_{f(5GHT_1)}(2) \setminus P_{f(6JIR_1)}(2)|=86\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000011111010101010011110111010011000001111001110101001010100101011001110101110101110010011001101101010101001011101100010111111101111000110001110000110110000111000000001011010010011000101110010011110111101111111111100011010011001100101010100101011111100011011110010111000101101000111011001101010000010111011010101001011011001010001011011101001101010111101010110110101110110111001111101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{869
}{\log_{20}
869}-\frac{392}{\log_{20}392})=127.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6JIR_1
5GHT_1
158
145.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]