Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6JDZ_1)}(2) \setminus P_{f(7TFQ_1)}(2)|=89\),
\(|P_{f(7TFQ_1)}(2) \setminus P_{f(6JDZ_1)}(2)|=85\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110011010110011010001010001011010000011010110010101001000010110101110110001011000011100011011001010010111110001001100001000110110011000101000110011111011111101111010101000000100011010110011011010110101111010111100100001001101001111011000101010110011011000001011111010001011101101000001110110101111110000100110011111111
Pair
\(Z_2\)
Length of longest common subsequence
6JDZ_1,7TFQ_1
174
4
6JDZ_1,3QXF_1
174
3
7TFQ_1,3QXF_1
170
4
Newick tree
[
6JDZ_1:87.65,
[
7TFQ_1:85,3QXF_1:85
]:2.65
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{611
}{\log_{20}
611}-\frac{292}{\log_{20}292})=89.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
6JDZ_1
7TFQ_1
112
107
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]