Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6JDG_1)}(2) \setminus P_{f(6XNL_1)}(2)|=87\),
\(|P_{f(6XNL_1)}(2) \setminus P_{f(6JDG_1)}(2)|=19\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101100111110111010000110101100101100001000001000000010011111011011100100100101010100001010010000000111010101011110000000
Pair
\(Z_2\)
Length of longest common subsequence
6JDG_1,6XNL_1
106
2
6JDG_1,2PRN_1
148
4
6XNL_1,2PRN_1
150
3
Newick tree
[
2PRN_1:80.40,
[
6JDG_1:53,6XNL_1:53
]:27.40
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{151
}{\log_{20}
151}-\frac{30}{\log_{20}30})=43.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
6JDG_1
6XNL_1
53
32.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]