Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6JBW_1)}(2) \setminus P_{f(3MXU_1)}(2)|=167\),
\(|P_{f(3MXU_1)}(2) \setminus P_{f(6JBW_1)}(2)|=22\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011110001110100000100010100111101101110000101011111011010111110010000110111100011000001110011111100011010100011010001001110011001001011110000111110110001100000101111100111000100111100111011100011110000010011000001101100101101110110111111110100110110010100011110001011011111001001011100101101110001011101111011110000100000101110011101010110101111011000101001111011001011000001101100001100000011111001011100101011101100001101100110111000010100100011000011110011101001
Pair
\(Z_2\)
Length of longest common subsequence
6JBW_1,3MXU_1
189
4
6JBW_1,6FJQ_1
175
4
3MXU_1,6FJQ_1
156
3
Newick tree
[
6JBW_1:95.02,
[
6FJQ_1:78,3MXU_1:78
]:17.02
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{608
}{\log_{20}
608}-\frac{143}{\log_{20}143})=134.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6JBW_1
3MXU_1
171
109.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]