Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ILW_1)}(2) \setminus P_{f(2LDI_1)}(2)|=120\),
\(|P_{f(2LDI_1)}(2) \setminus P_{f(6ILW_1)}(2)|=38\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100010101101011010101111010010100101011101001001110111111111001000010111101100111110100000100100000001111001101010000110101001011111101111101101100101011110111000001001011011110000011110001111000100010011010110000100100001111001111100110000000011000100001001001000000000
Pair
\(Z_2\)
Length of longest common subsequence
6ILW_1,2LDI_1
158
4
6ILW_1,3SPG_1
194
3
2LDI_1,3SPG_1
210
3
Newick tree
[
3SPG_1:10.43,
[
6ILW_1:79,2LDI_1:79
]:28.43
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{376
}{\log_{20}
376}-\frac{106}{\log_{20}106})=82.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ILW_1
2LDI_1
103
70
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]