Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ICT_1)}(2) \setminus P_{f(5TBJ_1)}(2)|=100\),
\(|P_{f(5TBJ_1)}(2) \setminus P_{f(6ICT_1)}(2)|=52\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111000010000010110101010011010001100000111111001000101001100100000110101010000011011011000110101101101000111101000101001111110011101001000111110000011011101111101100010100110101001100000110100001001000011001100000010001010011000101001110001000000111001100000110001001011111110100000111001001000000011100101100101101000010111001111000000010101110000010110101110111100011110100111010111110110100001000111001100110110001110100010110110001011100000010000011000010101011101011000110011001110000000010001111000
Pair
\(Z_2\)
Length of longest common subsequence
6ICT_1,5TBJ_1
152
4
6ICT_1,4JBP_1
176
4
5TBJ_1,4JBP_1
174
3
Newick tree
[
4JBP_1:91.01,
[
6ICT_1:76,5TBJ_1:76
]:15.01
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{865
}{\log_{20}
865}-\frac{361}{\log_{20}361})=135.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ICT_1
5TBJ_1
174
147
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]