Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6HSO_1)}(2) \setminus P_{f(8XQD_1)}(2)|=97\),
\(|P_{f(8XQD_1)}(2) \setminus P_{f(6HSO_1)}(2)|=76\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10111100100111011010111100110000111011100101000111111010010110110111001111000110010001111011010011111011011101000011000001000101011101011001011100100100111010011100111110111001010011111110010011010001111010000000111010001010101111100100110110011001011100111011000010011010101010110111011110011010101100111111101101110001111111001011101010110101000101010100000110100001111100010010001101001011111110000010100101101111101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{732
}{\log_{20}
732}-\frac{313}{\log_{20}313})=115.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6HSO_1
8XQD_1
144
126
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]