Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6HQY_1)}(2) \setminus P_{f(2HMX_1)}(2)|=179\),
\(|P_{f(2HMX_1)}(2) \setminus P_{f(6HQY_1)}(2)|=39\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010111101000001000010110001111011010011101001111010010010011011000001011001011000000101000111001010000111101100011110101111011100000111011111001000010110010011111001100011000100000110101010010110011100101101010010111111010101100001111101110101011011100110010100111111001011101001110011001100100110100101010100000000010101011001101011011111110011001011001011010010100101010110000100011010101001100000001001000000110010001010011000001001001011101110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{580
}{\log_{20}
580}-\frac{133}{\log_{20}133})=130.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6HQY_1
2HMX_1
170
108.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]