Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6HPA_1)}(2) \setminus P_{f(4GBD_1)}(2)|=69\),
\(|P_{f(4GBD_1)}(2) \setminus P_{f(6HPA_1)}(2)|=111\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:000100010001000011100111001101011001001010100001001001000010100101010100101111001010001111010111100011011011000010101110101100010110111010001100000010100100001000100000110110000101111101010001101100101101110100101001010111001100101111111010000001100110010001001101001100001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{731
}{\log_{20}
731}-\frac{273}{\log_{20}273})=126.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6HPA_1
4GBD_1
160
129
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]