Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6HNU_1)}(2) \setminus P_{f(1QMV_1)}(2)|=137\),
\(|P_{f(1QMV_1)}(2) \setminus P_{f(6HNU_1)}(2)|=30\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000010100100110000010000110111000001110111111110001110010101101010111111101000001011001100110010110010010011110110110000011001100010111011000110001001000100111000010011001010110011101001111100100110011100101100100100101001010000010011000011110001001101000000011001011000001101111011010101011010010011111101111110001100010100101001011001110111001100101011111010000000111011001110010010111111110101010001000011001101011100011001011111011010100011000111010000011101001111100111110011011010111
Pair
\(Z_2\)
Length of longest common subsequence
6HNU_1,1QMV_1
167
4
6HNU_1,5ZMD_1
162
4
1QMV_1,5ZMD_1
185
3
Newick tree
[
1QMV_1:90.36,
[
6HNU_1:81,5ZMD_1:81
]:9.36
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{688
}{\log_{20}
688}-\frac{197}{\log_{20}197})=138.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6HNU_1
1QMV_1
177
121
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]