Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6HMB_1)}(2) \setminus P_{f(7TFS_1)}(2)|=124\),
\(|P_{f(7TFS_1)}(2) \setminus P_{f(6HMB_1)}(2)|=59\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000000000111111110010101010010000010001011011000000110011010000110110100000111011011000010001011001011001101100100110001111100100001001001100101010100110110000001110001010011100000010110111101001100001011000101101110001000010110110111011100011101000000110110111000101010000101010100111000000100110000001101011011001100000001010011001010111000001010011100110110
Pair
\(Z_2\)
Length of longest common subsequence
6HMB_1,7TFS_1
183
4
6HMB_1,2FOZ_1
173
4
7TFS_1,2FOZ_1
164
4
Newick tree
[
6HMB_1:91.25,
[
2FOZ_1:82,7TFS_1:82
]:9.25
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{596
}{\log_{20}
596}-\frac{232}{\log_{20}232})=103.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6HMB_1
7TFS_1
130
105
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]