Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6HIN_1)}(2) \setminus P_{f(1TLY_1)}(2)|=121\),
\(|P_{f(1TLY_1)}(2) \setminus P_{f(6HIN_1)}(2)|=68\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111101000111000011011001001001010111011101000001100011000010001101010010010010110001111011100110110010110101000101000011011010010100111010000101001100100101011001001000001110010101101110100101010000101010111000111011011110111111011110111001001010101111001111110001110111011111011101111110110011110110000100111011001110011111011001110011101010000000100111111000001111001000101010111110010111011100100100110000010011001101101100111010111111001011011011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{728
}{\log_{20}
728}-\frac{278}{\log_{20}278})=124.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6HIN_1
1TLY_1
159
128.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]