Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6HFW_1)}(2) \setminus P_{f(4PSW_1)}(2)|=107\),
\(|P_{f(4PSW_1)}(2) \setminus P_{f(6HFW_1)}(2)|=63\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000000000111011100010010111001101101100101011101110110011101111011100010010011111101011001001010001101011101001101111111111111100010111111001010000011011001001011010101001010100101111011101101111010101010001011101010101000111000100100000011101101110110111001011010011101000110101101101101110111000011111011000010001010010010011011101001011111100011110011001001111101010001101101111000111011111101010111001110110010001101110100100000010010110101001101000101101110011001011
Pair
\(Z_2\)
Length of longest common subsequence
6HFW_1,4PSW_1
170
3
6HFW_1,8PRT_1
225
3
4PSW_1,8PRT_1
187
3
Newick tree
[
8PRT_1:10.89,
[
6HFW_1:85,4PSW_1:85
]:23.89
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{792
}{\log_{20}
792}-\frac{317}{\log_{20}317})=129.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6HFW_1
4PSW_1
168
139
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]