Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6HBG_1)}(2) \setminus P_{f(4FNR_1)}(2)|=35\),
\(|P_{f(4FNR_1)}(2) \setminus P_{f(6HBG_1)}(2)|=131\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000001100010110000011110110010000101000100001101000000010011101101110000101000000011110101001101000001100101010101110000001011000111100011011111111101010010000010111001011101011110110100010011001000100100010111010100100001001000101010100101111011010101000010111001000000100010100011100
Pair
\(Z_2\)
Length of longest common subsequence
6HBG_1,4FNR_1
166
4
6HBG_1,7DBH_1
192
3
4FNR_1,7DBH_1
232
4
Newick tree
[
7DBH_1:11.21,
[
6HBG_1:83,4FNR_1:83
]:30.21
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1016
}{\log_{20}
1016}-\frac{287}{\log_{20}287})=195.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6HBG_1
4FNR_1
254
175
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]