Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6GTJ_1)}(2) \setminus P_{f(2FBL_1)}(2)|=126\),
\(|P_{f(2FBL_1)}(2) \setminus P_{f(6GTJ_1)}(2)|=43\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111111010011010101101111010001100110110101010000111000100101101010111111110000010101101000011001010110111111110010110000101010011111000110111110100110111111100110000101100001001100010110001100000001101000110110010100111011111101001101111001111000100000101111010011101010011010000111111011111001001110101000110110111110101010100011001101101
Pair
\(Z_2\)
Length of longest common subsequence
6GTJ_1,2FBL_1
169
4
6GTJ_1,1DIH_1
154
4
2FBL_1,1DIH_1
155
4
Newick tree
[
2FBL_1:82.38,
[
6GTJ_1:77,1DIH_1:77
]:5.38
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{493
}{\log_{20}
493}-\frac{153}{\log_{20}153})=100.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6GTJ_1
2FBL_1
123
89
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]