Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6GTD_1)}(2) \setminus P_{f(5MIJ_1)}(2)|=190\),
\(|P_{f(5MIJ_1)}(2) \setminus P_{f(6GTD_1)}(2)|=12\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101000110000100010101110100100101011110000010000010011000001110011001010001100000101010000000100010010001000100010000010011000110100100001111100000011011010001001001101100101100010110000001000001100110011000110110001000010001101100001000110010101000000100011010011011010001000110010011110110100000011000101000010000100001011100110000000111001000001100100100011110010000100010111001010010100101000001001000110000111011100100011100100100000011100000100101001011100100000100000100111011111111001100000110101000001000110101000101100110000011001011010000001011000001011100001011011110001000100010000010101000011011000001000111110000001111000000110001100001010001100111110011101110100101001000110100000000010100100010101000001101000010001010011101000000001001000100010010100100001001100101011010000101000101010010101110000100110010101011000001100100110011100000010000110001100001000011100110101000110010001011100010010110100100011000110101011000010111000100000001111000000100010010010010010100110011011100011111001011100101010001000100111001001110000100011110100101110010011000111001111100010110111001010000100000110010010001001010101000011001101010110110011010000000010000101000100110000100101001011101000001110100110011010000010010011011101010110000110011001010110011101111110100000100101110000010110000010010100101010100010110000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1503
}{\log_{20}
1503}-\frac{174}{\log_{20}174})=349.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6GTD_1
5MIJ_1
428
240.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]