Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6GSZ_1)}(2) \setminus P_{f(1VLI_1)}(2)|=132\),
\(|P_{f(1VLI_1)}(2) \setminus P_{f(6GSZ_1)}(2)|=38\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110100111000001111100010101010101001000100101001100101100000001111110011001001010100110010000110011010111101001001111100010010100011010001010000101010101111001010000110011111100000000000001001100110111101101100101100110001010011110111100001001011000010000111100010010000001000110011100011110001011000110101111001100011011001010011011001111101010110100101100011001011001100101000101010110010101000110010101111001100001011110001000101000011100100011101010110110001000001110101011000101100011110111001000010000011011101010100100111011111110100011001110000111001100111000111100001011011010111001101000001100101100001110100010010010000010101000100111000101100000111111010111010010011001101100000011011110011100100010001100110000110110011101000100100111010101101001000111011011001111101101110010101111101001000110101110001110100000111010111011100010111110110010110110000100101
Pair
\(Z_2\)
Length of longest common subsequence
6GSZ_1,1VLI_1
170
4
6GSZ_1,4DXH_1
170
5
1VLI_1,4DXH_1
148
4
Newick tree
[
6GSZ_1:88.36,
[
1VLI_1:74,4DXH_1:74
]:14.36
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1255
}{\log_{20}
1255}-\frac{385}{\log_{20}385})=226.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6GSZ_1
1VLI_1
290
207.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]