Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6FYC_1)}(2) \setminus P_{f(1VMO_1)}(2)|=153\),
\(|P_{f(1VMO_1)}(2) \setminus P_{f(6FYC_1)}(2)|=36\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10110101101111011101011110010000100110101000111110000010111110110001111110111001110010011111010110010100010010101101111100100101110111110001111111111111100001101001001011010111101000001011111011110111101101010011110110000010011011011000110110010111010111111011101010111011001110100100010011011010110010110011010011111110010000101001000100011001101101100101101111110110010101000011100111111010001000111001001111010110101101101000001011101001011010001001101000111001
Pair
\(Z_2\)
Length of longest common subsequence
6FYC_1,1VMO_1
189
4
6FYC_1,8CQX_1
153
4
1VMO_1,8CQX_1
146
3
Newick tree
[
6FYC_1:89.88,
[
8CQX_1:73,1VMO_1:73
]:16.88
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{627
}{\log_{20}
627}-\frac{163}{\log_{20}163})=133.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6FYC_1
1VMO_1
168
110.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]