Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6FWP_1)}(2) \setminus P_{f(3HQU_1)}(2)|=114\),
\(|P_{f(3HQU_1)}(2) \setminus P_{f(6FWP_1)}(2)|=67\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000000001111010010000100000011000110010000101000101001101000011011110101101001101110000110010101100000010110001011111001111101100000001001111101100001010101010100010010001101100010011100001011111000011010010011011101010001001111111000101001111010101100011101100100100110100110001011110111101000101101011000001000011000110111011010010010010010111100000100100000010001000101110100000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{631
}{\log_{20}
631}-\frac{246}{\log_{20}246})=108.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6FWP_1
3HQU_1
134
111
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]