Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6FRP_1)}(2) \setminus P_{f(3DZM_1)}(2)|=149\),
\(|P_{f(3DZM_1)}(2) \setminus P_{f(6FRP_1)}(2)|=45\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0000001111111110110101101110000100110110111001000100101110010110000000001001011101000011110011011010010010110011000100110000100001001100110110010010110001010011100000101001111011010000011100011001001101110001000010110110111011000111110001001001111110100001001101010001101100001110011101000110110011010100010100111010100000100011101110101010011000100111000101011000
Pair
\(Z_2\)
Length of longest common subsequence
6FRP_1,3DZM_1
194
6
6FRP_1,2VAT_1
166
4
3DZM_1,2VAT_1
194
4
Newick tree
[
3DZM_1:10.23,
[
6FRP_1:83,2VAT_1:83
]:18.23
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{578
}{\log_{20}
578}-\frac{214}{\log_{20}214})=103.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6FRP_1
3DZM_1
134
103
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]