Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6FMV_1)}(2) \setminus P_{f(9FSA_1)}(2)|=108\),
\(|P_{f(9FSA_1)}(2) \setminus P_{f(6FMV_1)}(2)|=34\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000010100100111111111101100111100010111110111101001001011101101111111110011111110110110001000101011011111111111111100010011011011011111111111100101001011110010000111110100111111100011010111111100011001011111111111011010001111001011111111101111111110011011001011111100111111101111
Pair
\(Z_2\)
Length of longest common subsequence
6FMV_1,9FSA_1
142
6
6FMV_1,4NNB_1
178
4
9FSA_1,4NNB_1
182
4
Newick tree
[
4NNB_1:95.50,
[
6FMV_1:71,9FSA_1:71
]:24.50
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{439
}{\log_{20}
439}-\frac{157}{\log_{20}157})=83.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
6FMV_1
9FSA_1
104
77.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]