Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6FDZ_1)}(2) \setminus P_{f(8GHR_1)}(2)|=32\),
\(|P_{f(8GHR_1)}(2) \setminus P_{f(6FDZ_1)}(2)|=172\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111111110101111000110100101001010000001111001100010010100110010110110010110100101000010111010111010011000011100110111001101101100001001010100111001001010110111100101100001101011011101100000010101101111100111101111000100100010000110111011100000011001100010001010011101110100110
Pair
\(Z_2\)
Length of longest common subsequence
6FDZ_1,8GHR_1
204
4
6FDZ_1,8IAX_1
174
4
8GHR_1,8IAX_1
150
4
Newick tree
[
6FDZ_1:10.53,
[
8IAX_1:75,8GHR_1:75
]:25.53
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1291
}{\log_{20}
1291}-\frac{276}{\log_{20}276})=267.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6FDZ_1
8GHR_1
343
217.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]