Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6FDI_1)}(2) \setminus P_{f(7PDW_1)}(2)|=131\),
\(|P_{f(7PDW_1)}(2) \setminus P_{f(6FDI_1)}(2)|=53\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001110111000000111001001001110110110101001101110011000011001011100110011010000010110000101101100001110011101110010111111101100100111000111000001111000001100001111101100000011001000000010011101111001000101110100110000100011111000000101100110010100100110100010001100110010000001101011000001010000111100110111001101101010011001000001000011001011100100100100001010101
Pair
\(Z_2\)
Length of longest common subsequence
6FDI_1,7PDW_1
184
4
6FDI_1,5AUX_1
172
3
7PDW_1,5AUX_1
176
3
Newick tree
[
7PDW_1:91.32,
[
6FDI_1:86,5AUX_1:86
]:5.32
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{570
}{\log_{20}
570}-\frac{206}{\log_{20}206})=104.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6FDI_1
7PDW_1
136
103
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]