Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6EWL_1)}(2) \setminus P_{f(9KAD_1)}(2)|=111\),
\(|P_{f(9KAD_1)}(2) \setminus P_{f(6EWL_1)}(2)|=3\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101100000111110110100110010101110101010010001100000101000111010000100001000110100011000001000110111010010010011010111000000101111111110000
Pair
\(Z_2\)
Length of longest common subsequence
6EWL_1,9KAD_1
114
1
6EWL_1,4UXS_1
197
4
9KAD_1,4UXS_1
253
2
Newick tree
[
4UXS_1:12.70,
[
6EWL_1:57,9KAD_1:57
]:69.70
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{153
}{\log_{20}
153}-\frac{14}{\log_{20}14})=51.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
6EWL_1
9KAD_1
65
34
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]