Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6EVF_1)}(2) \setminus P_{f(1XTF_1)}(2)|=98\),
\(|P_{f(1XTF_1)}(2) \setminus P_{f(6EVF_1)}(2)|=52\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10010111010011011000001101000101010111110010000111111001011000110111011110000010010110011101000100110011000000111110111001100001100001010011010101001100100011111001000100101101111000010111101001001100111110100111110111111111100111101100000111111001111000000111110001110101010000101111010101100010101100101100000111110011100000001110111001001110011111011110010111111010101101100010010001101010001111100111110010110100111101000011100111001001111111000000001011001000110000000100100010010101110010001000100000000
Pair
\(Z_2\)
Length of longest common subsequence
6EVF_1,1XTF_1
150
6
6EVF_1,2QGO_1
212
6
1XTF_1,2QGO_1
172
7
Newick tree
[
2QGO_1:10.69,
[
6EVF_1:75,1XTF_1:75
]:27.69
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{936
}{\log_{20}
936}-\frac{427}{\log_{20}427})=135.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6EVF_1
1XTF_1
174
156.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]