Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6EUE_1)}(2) \setminus P_{f(5ANS_1)}(2)|=166\),
\(|P_{f(5ANS_1)}(2) \setminus P_{f(6EUE_1)}(2)|=28\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00011100001011100111100010111111110111101010010100110111010001000000100011110100110100010000101011110101000011111011110010001010010011000011110100011111111101000111011110001110110001011110100101110011110111011011000110011100101001110101101000110110010001000001100100001001101010111100110101111101011100100110010100001111100001011110111110000000100001101101011010011101101000011000011000011001110001101110110000011010010110001001111011111010010111111110010001000110001100110110010100100000011110000001101000110100010101011100111011010
Pair
\(Z_2\)
Length of longest common subsequence
6EUE_1,5ANS_1
194
3
6EUE_1,3GAX_1
226
3
5ANS_1,3GAX_1
148
3
Newick tree
[
6EUE_1:11.84,
[
5ANS_1:74,3GAX_1:74
]:39.84
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{708
}{\log_{20}
708}-\frac{175}{\log_{20}175})=150.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6EUE_1
5ANS_1
193
125.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]