Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ETU_1)}(2) \setminus P_{f(1XFI_1)}(2)|=103\),
\(|P_{f(1XFI_1)}(2) \setminus P_{f(6ETU_1)}(2)|=75\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100100010010010001111010000100100011010001100111101111001010000001001111011001101011110000000011011000011000000011000100100001000100011011010101100000010110110100110000111101100101011110001110000101001001011010010111100100100110011110001011110001111010110001111001000110111011010011100110010110110101100101100000101010101011101101000011001000
Pair
\(Z_2\)
Length of longest common subsequence
6ETU_1,1XFI_1
178
4
6ETU_1,7EXX_1
188
4
1XFI_1,7EXX_1
158
4
Newick tree
[
6ETU_1:95.34,
[
1XFI_1:79,7EXX_1:79
]:16.34
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{709
}{\log_{20}
709}-\frac{342}{\log_{20}342})=100.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ETU_1
1XFI_1
126
124.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]