Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ERG_1)}(2) \setminus P_{f(1TXA_1)}(2)|=204\),
\(|P_{f(1TXA_1)}(2) \setminus P_{f(6ERG_1)}(2)|=22\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011000000010001000000010101000001000111110100111000000010110101001001010011000001111110100000001010010110010011100110100101001000100111010000100111101011001010100001111000001010001010010001101000111101101001111010110001101100001010100000100110010100000011001010100011101110011001101111010000001100000010000111111000000010100011100000001001001111111101111100000101011101000111100011011110010001111000010001110111111000010000101011110111111100000111000111010011010111001010000001001110001001011110110100110101101011000110110010011011000101010000
Pair
\(Z_2\)
Length of longest common subsequence
6ERG_1,1TXA_1
226
3
6ERG_1,5OVB_1
186
3
1TXA_1,5OVB_1
126
3
Newick tree
[
6ERG_1:11.82,
[
5OVB_1:63,1TXA_1:63
]:50.82
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{617
}{\log_{20}
617}-\frac{73}{\log_{20}73})=160.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ERG_1
1TXA_1
202
114.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]