Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ERF_1)}(2) \setminus P_{f(5PEM_1)}(2)|=160\),
\(|P_{f(5PEM_1)}(2) \setminus P_{f(6ERF_1)}(2)|=27\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011000000010001000000010101000001000111110100111000000010110101001001010011000001111110100000001010010110010011100110100101001000100111010000100111101011001010100001111000001010001010010001101000111101101001111010110001101100001010100000100110010100000011001010100011101110011001101111010000001100000010000111111000000010100011100000001001001111111101111100000101011101000111100011011110010001111000010001110111111000010000101011110111111100000111000111010011010111001010000001001110001001011110110100110101101011000110110010011011000101010000
Pair
\(Z_2\)
Length of longest common subsequence
6ERF_1,5PEM_1
187
3
6ERF_1,7UHT_1
185
4
5PEM_1,7UHT_1
168
4
Newick tree
[
6ERF_1:95.81,
[
7UHT_1:84,5PEM_1:84
]:11.81
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{682
}{\log_{20}
682}-\frac{138}{\log_{20}138})=155.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ERF_1
5PEM_1
196
120.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]