Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6EAI_1)}(2) \setminus P_{f(7ZRN_1)}(2)|=111\),
\(|P_{f(7ZRN_1)}(2) \setminus P_{f(6EAI_1)}(2)|=70\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011110101100110110101101001000100000011001010110011000110101001000000100101011000100000110010111000110000100011011000100100001010000000111111111011101111001101010100100111000011101001101101011010001000111110000001001001101000000110100010101110011000110000110110011100000011000101100000011011000111011011101110010101000110000000100101000001100001101011101000010000110001001011001010010110100000110100010001100111110001000001000001110010010001000110010110010010000100101010111010011111000101010010001000111100000110111101101100101010001011110011111110100000000110010100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{911
}{\log_{20}
911}-\frac{343}{\log_{20}343})=152.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6EAI_1
7ZRN_1
196
157.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]