Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6DZO_1)}(2) \setminus P_{f(7QSC_1)}(2)|=82\),
\(|P_{f(7QSC_1)}(2) \setminus P_{f(6DZO_1)}(2)|=79\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000001110100000111111101101110001011001101110110111110011101101001010111111011001011111000010111111101011100110110100001110011110111000111001110001111110110100011001100101000110001101100011111001100100001111101111001001011101111111010111011000110100111010011011011001
Pair
\(Z_2\)
Length of longest common subsequence
6DZO_1,7QSC_1
161
3
6DZO_1,5QKI_1
157
3
7QSC_1,5QKI_1
152
3
Newick tree
[
6DZO_1:80.64,
[
5QKI_1:76,7QSC_1:76
]:4.64
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{512
}{\log_{20}
512}-\frac{244}{\log_{20}244})=76.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
6DZO_1
7QSC_1
99
94
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]