Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6DOS_1)}(2) \setminus P_{f(1IWD_1)}(2)|=66\),
\(|P_{f(1IWD_1)}(2) \setminus P_{f(6DOS_1)}(2)|=103\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001110010101100101111000110000101110001111100011011111011001000000011000000110110000100011000001111011001001100000001110100001101010010
Pair
\(Z_2\)
Length of longest common subsequence
6DOS_1,1IWD_1
169
3
6DOS_1,1GEC_1
167
3
1IWD_1,1GEC_1
108
10
Newick tree
[
6DOS_1:91.84,
[
1GEC_1:54,1IWD_1:54
]:37.84
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{350
}{\log_{20}
350}-\frac{135}{\log_{20}135})=65.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
6DOS_1
1IWD_1
82
67
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]