Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6DLI_1)}(2) \setminus P_{f(2VHH_1)}(2)|=40\),
\(|P_{f(2VHH_1)}(2) \setminus P_{f(6DLI_1)}(2)|=126\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000011110100110010111111001111101101100111000110110010110110111110011101111110011011111000100111101100101111111011101101100111110010100110100101111010111111100111001111111000100110010111110000111011111111111110010101001101101011101010100101101010100111001100101100101001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{683
}{\log_{20}
683}-\frac{278}{\log_{20}278})=112.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6DLI_1
2VHH_1
145
117.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]