Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6DGE_1)}(2) \setminus P_{f(1NGN_1)}(2)|=115\),
\(|P_{f(1NGN_1)}(2) \setminus P_{f(6DGE_1)}(2)|=56\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000011110100110111110111110100111011100110011001010010110100000101111100111011011100011001110011110000111001111000001011001100101011010000101011011101001111100000001101110010001100111101101001001111011111000010011011001000000010110011100101011001011100010001001010001000111110100100101110000111000100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{463
}{\log_{20}
463}-\frac{155}{\log_{20}155})=91.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
6DGE_1
1NGN_1
114
87
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]