Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6DDO_1)}(2) \setminus P_{f(3AZV_1)}(2)|=111\),
\(|P_{f(3AZV_1)}(2) \setminus P_{f(6DDO_1)}(2)|=41\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000000001111010100010001001101110100011000000100011100011100100111010001110001000011101010011011010011011000011001111001010110101010111010110110110000001001100000001011001101100011101101100010000000110010111000011001001101100010100001001000110010111110010011011110000000000110011011011011000011000101111010011111010110010000101011000111001110011000010011110100110110011101100000011001111101100101100000110010010111101000100000001010010001001000101001111011001000011100110010101101101100110011011011110000100001010010011100000010100000000010001001011011111100100000000000000000
Pair
\(Z_2\)
Length of longest common subsequence
6DDO_1,3AZV_1
152
6
6DDO_1,8PSU_1
153
4
3AZV_1,8PSU_1
173
4
Newick tree
[
8PSU_1:83.45,
[
6DDO_1:76,3AZV_1:76
]:7.45
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1022
}{\log_{20}
1022}-\frac{443}{\log_{20}443})=152.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6DDO_1
3AZV_1
195
169.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]