Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6DDH_1)}(2) \setminus P_{f(7BDV_1)}(2)|=111\),
\(|P_{f(7BDV_1)}(2) \setminus P_{f(6DDH_1)}(2)|=57\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000000000111101010001000100110111010001100000010001110001110010011101000111000100001110101001101101001101100001100111100101011010101011101011011011000000100110000000101100110110001110110110001000000011001011100001100100110110001010000100100011001011111001001101111000000000011001101101101100001100010111101001111101011001000010101100011100111001100001001111010011011001110110000001100111110110010110000011001001011110100010000000101001000100100010100111101100100001110011001010110110110011001101101111000010000101001001110000001010000000001000100101101
Pair
\(Z_2\)
Length of longest common subsequence
6DDH_1,7BDV_1
168
3
6DDH_1,3RGI_1
178
4
7BDV_1,3RGI_1
170
4
Newick tree
[
3RGI_1:88.00,
[
6DDH_1:84,7BDV_1:84
]:4.00
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{920
}{\log_{20}
920}-\frac{366}{\log_{20}366})=148.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6DDH_1
7BDV_1
188
156
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]