Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6DAM_1)}(2) \setminus P_{f(7VNX_1)}(2)|=158\),
\(|P_{f(7VNX_1)}(2) \setminus P_{f(6DAM_1)}(2)|=32\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10011001111001111111111001000100100011011011100010000010010000100101110100111010011111100110100111001011000001111000100010101111000010011101010111000001101101001001101001010111000011111000110110110111011111001001010101001110100110100000100101011100000001010010111100111000010101100101010010110011000101011100100101011001010001000110011110001010100011010001110010010101111001001101100101001010110000000010010001101111100000110001001010101001010001101000110101110101111100110100010001101011010010111000001011010110111111010101010110100100100100101111010010001000111101111111111111100100000001111111000100000111010111110
Pair
\(Z_2\)
Length of longest common subsequence
6DAM_1,7VNX_1
190
4
6DAM_1,3KPT_1
146
4
7VNX_1,3KPT_1
140
5
Newick tree
[
6DAM_1:89.08,
[
3KPT_1:70,7VNX_1:70
]:19.08
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{840
}{\log_{20}
840}-\frac{223}{\log_{20}223})=170.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6DAM_1
7VNX_1
215
143.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]