Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6CJB_1)}(2) \setminus P_{f(9IUP_1)}(2)|=50\),
\(|P_{f(9IUP_1)}(2) \setminus P_{f(6CJB_1)}(2)|=123\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000010000100011011001000011110110100000011110011000000001000100001101001001111101111100110111010011110010110101100100000010101101011001011101000111100100111011010011111000011011000110111001101110111001000101000110111111000110001111000011111110011110010010101000000100110110001010011011100010001100010011111011101010010011100011011001111001100111100101110000111100111010111001001010100111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{985
}{\log_{20}
985}-\frac{391}{\log_{20}391})=157.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6CJB_1
9IUP_1
202
166
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]