Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6CIF_1)}(2) \setminus P_{f(5DWR_1)}(2)|=114\),
\(|P_{f(5DWR_1)}(2) \setminus P_{f(6CIF_1)}(2)|=65\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11101111110001100110011011011010010110100001010100011001000110111100101010111111001100100110000001000100100001001010111010001000011111001100110011010110101101000001001100100010010001010011011100011010101100011001100000101010110101001010011011010101111110110011011111101110111001010111111101011111001110111101111110110100011000100100001100111010100000001100011101011110000110101100011010110010000010110110111111110101011100011001101110001011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{768
}{\log_{20}
768}-\frac{328}{\log_{20}328})=120.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6CIF_1
5DWR_1
154
133
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]