Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6CGZ_1)}(2) \setminus P_{f(7KLW_1)}(2)|=111\),
\(|P_{f(7KLW_1)}(2) \setminus P_{f(6CGZ_1)}(2)|=59\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100110101010110010101000111110011011010110011011100111001010111000001001110101101000111101000001000100101010010111100101001101011001011100001011100010000011011101011100010100100000011110110110110101111111010110011111100110010001111011111000111100100100110000001111000001001000001000
Pair
\(Z_2\)
Length of longest common subsequence
6CGZ_1,7KLW_1
170
4
6CGZ_1,9NOT_1
191
4
7KLW_1,9NOT_1
203
4
Newick tree
[
9NOT_1:10.66,
[
6CGZ_1:85,7KLW_1:85
]:17.66
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{476
}{\log_{20}
476}-\frac{194}{\log_{20}194})=82.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
6CGZ_1
7KLW_1
109
91
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]