Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6BUY_1)}(2) \setminus P_{f(2ITN_1)}(2)|=141\),
\(|P_{f(2ITN_1)}(2) \setminus P_{f(6BUY_1)}(2)|=35\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00011000011001110000101010101010110110100110110001001111000010000010111101110001101000011010001110101010110100100010101100111100000101010011100010000100011010011101010101101001011001110100011100101010010001110001110110010010001001111011101011101011011010111101110000000111000011110101111001111000001111010000100000110111001100111011011110011100111001001110010101010011111010011110111000110011001001101001100100001101101100110001100111001011100000010110010011010001011001011100101011111101000010100001110000010000110011111100100111000011001001000110010001111010101010100000010110001000101111100101100010110101111011100011101000011101110010010111000010111000100010111001001000100010011000001011001000111000011001100110010001101010001000111011000101111010010110010010011100001111000110010101100001000100110011101111011000100110001110101001101100010001010010010000101111010011001100001010110000011101110000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1229
}{\log_{20}
1229}-\frac{327}{\log_{20}327})=236.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6BUY_1
2ITN_1
298
201.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]