Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6BJM_1)}(2) \setminus P_{f(1MOE_1)}(2)|=103\),
\(|P_{f(1MOE_1)}(2) \setminus P_{f(6BJM_1)}(2)|=67\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11101101101010110100001111011111111010101011000101000011101111000111101110010001111001000110001111101011010010110111000100101001011001000011001001101010101000111011011110101010100001100000100010110001010011111110100100100100011110010110111000001000110001001101001100011111111001010111
Pair
\(Z_2\)
Length of longest common subsequence
6BJM_1,1MOE_1
170
3
6BJM_1,6NBR_1
185
4
1MOE_1,6NBR_1
171
4
Newick tree
[
6NBR_1:90.38,
[
6BJM_1:85,1MOE_1:85
]:5.38
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{524
}{\log_{20}
524}-\frac{240}{\log_{20}240})=81.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
6BJM_1
1MOE_1
105
95
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]