Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6BII_1)}(2) \setminus P_{f(7XPZ_1)}(2)|=49\),
\(|P_{f(7XPZ_1)}(2) \setminus P_{f(6BII_1)}(2)|=110\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101011100111001101100010101100000110011100100101110110001000110111010111001110001010010001101000101100101011111111110011010011001010001111010111100101001111111011011100101111011001000010100011101011001100001111111100000011000010110101111011010110001110110011111111011000100000111100111010110101110011101110011110010111011000110100111
Pair
\(Z_2\)
Length of longest common subsequence
6BII_1,7XPZ_1
159
4
6BII_1,6OOA_1
165
4
7XPZ_1,6OOA_1
154
5
Newick tree
[
6BII_1:82.30,
[
7XPZ_1:77,6OOA_1:77
]:5.30
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{877
}{\log_{20}
877}-\frac{333}{\log_{20}333})=146.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6BII_1
7XPZ_1
182
147
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]