Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6APD_1)}(2) \setminus P_{f(4OLB_1)}(2)|=31\),
\(|P_{f(4OLB_1)}(2) \setminus P_{f(6APD_1)}(2)|=102\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101111010110011011010110100100010000001100101011001100011010100100100010010101100010000011001011100011000010001101100010010000101000000011111111101110111100110101010010011100001110100110110001101000100011111000000110100110100000011010001010111001100011000011011001110000001100010110000001101100011101101110111001010100011000000010010100000110000110101110100001000011000100101100101001011010000011000001000110011111000100000100000111001001000100011001011001001000010010101011101001111100010101001000100011110000011011110110110010101000101111001110101110111000000000110010100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1432
}{\log_{20}
1432}-\frac{573}{\log_{20}573})=217.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6APD_1
4OLB_1
278
229
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]