Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6AKH_1)}(2) \setminus P_{f(3QWF_1)}(2)|=95\),
\(|P_{f(3QWF_1)}(2) \setminus P_{f(6AKH_1)}(2)|=64\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10111110111111010001011000001100110111011110100101101001101101110110010010111011000001100110011000100100000000101100111111001001000110010010001001000001110000010011100010110011001110111110101011100101010010111001001001111101100100011110000000000010011000010110001011011011010110101111110011111111010011000100100000111100011101000011011000011001110011100001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{626
}{\log_{20}
626}-\frac{270}{\log_{20}270})=99.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
6AKH_1
3QWF_1
127
110
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]